Journal of Organometallic Chemistry, 321 (1987) 339-352 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

LINEARE OLIGOPHOSPHAALKANE

XVIII *. ADDITION PH-FUNKTIONELLER METHYLENBISPHOSPHANE AN DIE Mo \equiv Mo-DREIFACHBINDUNG IN (η^5 -C₅H₅)₂Mo₂(CO)₄

DAVID J. BRAUER, GERD HASSELKUSS ** und OTHMAR STELZER*

Fachbereich 9, Anorganische Chemie, Bergische Universität-GH Wuppertal, Gaussstr. 20, D-5600 Wuppertal 1 (B.R.D.)

(Eingegangen den 16. September 1986)

Summary

By means of the addition of the PH-functional methylenebisphosphanes R^1R^2 -PCH₂PR³H (PCP) to the Mo=Mo triple bond in $(\eta^5-C_5H_5)_2Mo_2(CO)_4(Mo=Mo)$ the complexes $(\eta^5-C_5H_5)_2Mo_2(CO)_4(PCP)$ containing a five-membered ring system Mo_2P_2C are obtained. Starting with unsymmetrically substituted methylenebisphosphanes R'_2PCH_2PRH only one isomer is formed, while the disecondary derivatives RHPCH_2PHR (as the diastereomeric mixture) gave two isomers of $(\eta^5-C_5H_5)_2Mo_2(CO)_4(PCP)$ (A₂ and AB) as indicated by the ³¹P{¹H} and ¹³C{¹H} NMR spectra.

X-ray structural analysis of the derivative of the racemate of t-BuHPCH₂PH(t-Bu) (space group C2/c, monoclinic, a 18.034(2), b 14.909(1), c 11.106(1) Å, α 90, β 99.788(8), γ 90°) reveals a puckered Mo₂P₂C five-membered ring system (dihedral angle P-Mo-Mo'-P' 54.4(2)°) with square-pyramidal coordination geometry at the Mo atoms. Two of the CO ligands (C(6)-O(1) and C(6')-O(1')) are almost coplanar with the molybdenum atoms, while the terminal CO groups (C(7)-O(2) and C(7')-O(2')) are about orthogonal (dihedral angle C(7)-Mo-Mo'-C(7') 88.4(3), Mo-Mo' 3.2109(4), Mo-P 2.4567(8), P-C(8) 1.834(3), P-H(P) 1.37(3) Å).

Zusammenfassung

Durch Addition PH-funktioneller Methylenbisphosphane $R^1 R^2 PCH_2 PR^3 H (PCP)$ an die Mo=Mo-Dreifachbindung in $(\eta^5-C_5H_5)_2Mo_2(CO)_4(Mo=Mo)$ gelangt man zu Komplexen $(\eta^5-C_5H_5)_2Mo_2(CO)_4(PCP)$ mit fünfgliedrigen Ringsystemen Mo_2P_2C . Sie fallen bei unsymmetrischer Substitution des PCP-Skeletts (R'_2PCH_2)

^{*} XVII. Mitteilung siehe Lit. 1.

^{**} Neue Adresse: Herberts GmbH, Christbusch 25, D-5600 Wuppertal 2 (B.R.D.)

PRH; R' = R, H) in Form eines Isomeren an. Werden disekundäre Derivate RHPCH₂PRH (als Diastereomerengemische) eingesetzt, so treten die Additionsprodukte (η^5 -C₅H₅)₂Mo₂(CO)₄(RHPCH₂PRH) als Gemisch zweier Isomeren (A₂, AB) auf, wie die Analyse der ³¹P{¹H}- und ¹³C{¹H}-NMR-Spektren zeigt.

Die Röntgenstrukturanalyse des vom Racemat von t-BuHPCH₂PH(t-Bu) abgeleiteten Komplexes (Raumgruppe C2/c, monoklin, a 18.034(2), b 14.909(1), c 11.106(1) Å, α 90, β 99.788(8), γ 90°) zeigt das Vorliegen eines gewellten fünfgliedrigen Mo₂P₂C-Ringsystems (Dihedralwinkel P-Mo-Mo'-P' 54.4(2)°) mit verzerrt quadratisch pyramidaler Koordination an den Mo-Atomen an. Zwei der CO-Liganden (C(6)-O(1) und C(6')-O(1')) liegen mit den Mo-Atomen Mo und Mo' nahezu in einer Ebene (C(6)-Mo-Mo'-C(6') 162.5(3)°), während die terminalen (C(7)-O(2) und C(7')-O(2')) mit den beiden Mo-Atomen einen Dihedralwinkel von 88.4(3)° bilden (Mo-Mo' 3.2109(4), Mo-P 2.4567(8), P-C(8) 1.834(3), P-H(P) 1.37(3) Å).

Einleitung

Der geringe Abstand der Donoratome befähigt ditertiäre Phosphane $R_2PCH_2PR_2$ Übergangsmetallatome in enger Nachbarschaft zu binden und Metall-Metall-Bindungen zu überbrücken [2]. Die resultierenden M_2P_2C -Fünfringsysteme stellen stabile Verbände mit verstärkter Metall-Metall-Wechselwirkung dar. Trägt das P-C-P-Gerüst funktionelle Gruppen (P-H), so kann es weitere Übergangsmetallatome binden und die Bildung von Clustern induzieren. In den kürzlich von uns synthetisierten Fe₃- und Fe₄-Clustern (II und III) fungieren Fe₂P₂C-Ringe als stabilisierende Einheiten. Ihr Aufbau verläuft über Zweikernkomplexe (I) PH-funktioneller Methylenbisphosphane RR'PCH₂PRH (R = Alkyl; R' = R, H) [3-6] mit isolierten Fe(CO)₄-Gruppierungen.

Im Zusammenhang mit Arbeiten zur systematischen Synthese M_2P_2C -stabilisierter Clusterverbindungen waren nun Komplexverbindungen der PH-funktionellen Methylenbisphosphane, in denen das M_2P_2C -Gerüst mit einer Metall-Metall-Bindung bereits vorgebildet war, von besonderem Interesse. Sie sollten durch Anlagerung zweizähniger Donorsysteme PCP an Metall-Metall-Dreifachbindungen zugänglich sein.

Über die Addition tertiärer Phosphane an Metall-Metall-Mehrfachbindungssysteme wurde bereits berichtet [7]. Sie verläuft im allgemeinen glatt und ohne Bildung von Nebenprodukten. Um Sekundärreaktionen bei der Addition der PH-funktionellen Methylenbisphosphane an die M=M-Mehrfachbindung nach Gl. 1 zu verhindern, wählten wir eine Verbindung mit wenig reaktiven Substituenten an den Metallatomen M. Als solche bot sich Tetracarbonylbis(η^{5} -cyclopentadienyl)dimolybdän(Mo=Mo) an [7-9].

Addition PH-funktioneller Methylenbisphosphane $R^1 R^2 PCH_2 PR^3 H$ an $(\eta^5 - C_5 H_5)_2 Mo_2(CO)_4$

Die PH-funktionellen Methylenbisphosphane $R^1R^2PCH_2PR^3H$ (1–10) [10] reagieren mit $(\eta^5-C_5H_5)_2Mo_2(CO)_4$ glatt unter Bildung der rot gefärbten Komplexe 11–20 (Schema 1, Gl. 2).

Nach den Ergebnissen von Klingler, Butler und Curtis [9] verdrängen einzähnige Phosphanliganden die halbverbrückenden CO-Gruppen in $(\eta^5-C_5H_5)(CO)_2Mo \equiv Mo(CO)_2(\eta^5-C_5H_5)$ von der Rückseite der Mo \equiv Mo her und liefern ausschliesslich die trans-Isomeren der Reaktionsprodukte $(\eta^5-C_5H_5)(CO)_2LMoMoL(CO)_2(\eta^5-C_5H_5)$. Die Verknüpfung der beiden P-Donorsysteme in 11–20 durch eine CH₂-Brücke schliesst, wie Untersuchungen an Molekülmodellen zeigen, Reaktionsprodukte mit trans-ständigen CO-Gruppen an beiden Mo-Atomen aus sterischen Gründen aus.

 $(\eta^{5} - C_{5}H_{5})_{2}Mo_{2}(CO)_{4} + (i-Pr)HPCH_{2}PH(i-Pr)$

	1,11	2 , 12	3,13	4,14	5 , 15	6,16	7,17	8,18	9,19	10,20
R1	н	Me	Me	i-Pr	i-Pr	i-Pr	t-Bu	t-Bu	CH₂Ph	CH₂Ph
R ²	н	н	Me	н	н	i-Pr	н	н	н	н
R ³	н	Me	Me	н	i-P r	i-Pr	н	t-Bu	н	CH ₂ Ph
	1	3a, 1	Ba : Me	PCH ₂	Me 2					

SCHEMA 1

Durch die Anhäufung sperriger Substituenten an den P-Atomen wird der Angriff des Methylenbisphosphans an der Mo=Mo-Dreifachbindung des $(\eta^5-C_5H_5)-(CO)_2Mo=Mo(CO)_2(\eta^5-C_5H_5)$ wirkungsvoll blockiert. So reagieren das tertiärsekundäre Phosphan (PhCH₂)₂PCH₂PH(CH₂Ph) und die tertiären Phosphane R₂PCH₂PR₂ (R = CH₂Ph, i-Pr)) unter den Bedingungen der Synthese von **11-20** mit $(\eta^5-C_5H_5)_2Mo_2(CO)_4$ nicht. Das tertiäre Phosphan Me₂PCH₂PMe₂ (**3a**) mit den wenig raumbeanspruchenden Me-Substituenten setzt sich dagegen mit $(\eta^5-C_5H_5)_2Mo_2(CO)_4$ rasch zu **13a** um.

Die Komplexe 11-20 sind bei Raumtemperatur stabil. Bei erhöhter Temperatur erfolgt in CO-Atmosphäre Verdrängung des Methylenbisphosphans, wie am Beispiel von 15 gezeigt werden konnte (Schema 1, Gl. 3).

Die Komplexierung der Methylenbisphosphane ist mit einer Tieffeldverschiebung der ³¹P-NMR-Signale bis zu ca. 80 ppm verbunden. Im Falle der primär-sekundären Methylenbisphosphane nimmt die Kopplungskonstante ${}^{2}J({}^{31}P-{}^{31}P)$ bei Komplexierung zu, während sie bei den tertiär-sekundären Methylenbisphosphanen abnimmt.

Die Komplexe der als Diastereomerengemische (Mesoform und Racemat) eingesetzten disekundären Methylenbisphosphane RHPCH₂PRH (12, 15, 18 und 20) treten in Form zweier Isomeren auf, die ³¹P{¹H}-NMR-Spektren vom Typ A₂ bzw. AB bzw. AX zeigen.

Die für **11–20** zu diskutierenden Strukturen lassen sich von den Rotameren A–D der Muttersubstanz $(\eta^5-C_5H_5)_2Mo_2(CO)_6(Mo-Mo)$ [7,8,11,12] durch paarweise Substitution der medialen CO-Gruppen (CO)_m (1, 1', 2, 2') ableiten (Fig. 1). Dabei kann das ekliptische C_{2v} -Rotamere A aus sterischen Gründen ausgeschlossen werden. Der Ersatz der CO-Liganden 1 und 2 bzw. 1' und 2' im Rotameren A durch das P–C–P-Donorsystem führt zu einem gespannten Mo_2P_2C -Fünfring. Darüberhinaus liegen die verbleibenden CO-Gruppen mit den beiden Mo-Atomen (Mo, Mo') in einer Ebene und bilden mit der Mo–Mo'-Achse einen Winkel kleiner als 90°.

Die Substitution der CO-Gruppen 1' und 2 in C durch die P-Atome der Methylenbisphosphane führt, wie im Fall von A, zu einem gespannten Mo_2P_2C -Fünfring mit "Envelope"-Struktur. In den Rotameren B und D von $(\eta^5-C_5H_5)_2Mo_2(CO)_6$ ist die sterische Wechselwirkung zwischen den beiden Molekülhälften vergleichbar [13].

Sowohl **B** als auch **D** liefern bei paarweiser Substitution der vicinalen CO-Liganden (2 und 1' bzw. 2 und 1' oder 1 und 2') durch die P-Atome des Racemats (mit C_2 -Achse) bzw. der Mesoform der Liganden HRPCH₂PRH verdrillte Mo₂P₂C-Fünfringsysteme mit äquivalenten bzw. nichtäquivalenten P-Atomen. Modellstudien zeigen, dass der verdrillte Mo₂P₂C-Fünfring im Vergleich zur Envelope-Struktur eine geringere Ringspannung aufweist. Die von der Racematform bzw. Mesoform der HRPCH₂PRH-Liganden 2, 5, 8 und 10 abgeleiteten Fünfringsysteme geben in Übereinstimmung mit den vorstehenden Überlegungen im ³¹P{¹H}-NMR-Spektrum Singuletts (A₂-Spinsystem) bzw. Vierlinienmuster (AB-Spinsystem).

In den A_2 -Isomeren von 12, 15, 18 und 20 besetzen die sperrigen Substituenten R der HRPCH₂PRH-Liganden die energetisch günstige equatoriale Position des verzerrten Mo₂P₂C-Fünfrings.

Im Falle der AB-Isomeren von 12, 15, 18 und 20, die sich von der Mesoform der P-C-P-Liganden 2, 5, 8 und 10 ableiten, besetzt einer der Substituenten R die ungünstige axiale Position in den Mo_2P_2C -Fünfringen von B bzw. D. Ist R ein

Fig. 1. Rotamere von $(\eta^5-C_5H_5)_2Mo_2(CO)_6$ und davon abgeleiteten Derivaten.

raumbeanspruchender Substituent, z.B. i-Pr, so lagert sich das AB-Isomere bei Erhitzen auf ca. 80° C in das sterisch weniger belastete A₂-Isomere um.

Die ${}^{13}C{}^{1}H{}^{31}P{}$ -NMR-Spektren von 12 und 15 zeigen in Übereinstimmung mit den vorstehenden Strukturvorschlägen zwei Signale für die CO-Gruppen des A₂-Isomeren. Während für das AB-Isomere von 15 erwartungsgemäss vier Signale gefunden werden (Fig. 2b), beobachtet man im Falle von 12 infolge Linienkoinzidenz nur drei. In ${}^{13}C{}^{1}H{}$ -NMR-Spektren sind die Signale der AB- und A₂-Isomeren durch ${}^{31}P{}^{-13}C{}$ -Kopplungen in Dubletts aufgespalten (Fig. 2a, Tab. 2).

Die Komplexe der Methylenbisphosphane $R_2PCH_2PR_2$ (R = H, Me; 1, 3a) und RHPCH₂PH₂ (R = i-Pr, t-Bu, CH₂Ph; 4, 7, 9) und R_2PCH_2PRH (R = Me, i-Pr; 3, 6) treten, wie die ³¹P{¹H}-NMR-Spektren zeigen, in Abhängigkeit vom Substitutionsmuster des P-C-P-Skeletts nur in Form eines A_2 - oder AB- bzw. AX-Isomeren auf (Tab. 1). Dies wird für 13, 13a, 14 und 17 durch die ¹³C{¹H}-NMR-spektroskopischen Befunde bestätigt (Tab. 2).

Die ${}^{13}C{}^{1}H$ -NMR-Signale im Bereich von 246-250 ppm zeigen eine signifikant grössere ${}^{13}C{}^{-31}P$ -Dublettaufspaltung als diejenigen im Bereich von 241.7-244.5 ppm. Wir ordnen daher die bei niedrigem Feld liegenden Signale den Carbonylbanden zu, die sich in "*trans*"-Position (CO-Liganden (CO)_m in der vom Rotameren **B** bzw. **D** abgeleiteten Struktur) zu den P-Atomen des P-C-P-Liganden befinden

[4,14,15]. Den ¹³C{¹H}-Resonanzen bei höherem Feld entsprechen die CO-Liganden, die zur Mo-P-Bindung einen Winkel von $\leq 90^{\circ}$ bilden (CO-Liganden (CO)₁). Im Infrarotspektrum zeigen 11-13, 17 und 18 (CH₂Cl₂-Lösung) zwei nahezu

TABELLE 1

	A ₂ -Isomeres	AB- bzw. AX-Ison	neres	$^{2}J(PP)$
		$\delta(\mathbf{P}(\mathbf{A}))$	δ(P(B))	
11	- 57.2 (340) a			
12	-11.9 (360) a	- 5.7	-28.5 (360) ^a	(52)
13		- 5.6	-13.3 (360) ^a	(50)
13a	5.2			
14		35.8 (327) a	-65.3 (340) ^a	(47)
15	27.0 (340) a	35.4 (340) a	13.4 (340) ^a	(50)
16		38.0	28.0 (340) "	(46)
17		51.7 (345) a	-65.9 (350) ^a	(44)
18	40.7 (340) ^a	49.3 (345) ^a	29.5 (345) ^a	(41)
19		18.5 (350) a	$-65.1(350)^{a}$	(54)
20	9.4 (350) a	16.8	0.4	(60)

³¹P-NMR DATEN DER KOMPLEXE 11-20 (Chemische Verschiebung in ppm relativ zu 85% H₃PO₄; Kopplungskonstanten (Hz) in Klammern)

^a N(PH).

	AB- bzw. AX-lsome CO-Liganden	sres	A ₂ -Isomeres CO-Liganden	C (η ⁵ -C ₅ H ₅)	C (P-CH ₂ -P)	C(α) des P-ständigen Alkylrestes	$C(\beta)$
12	247.0 *	242.0 (7.5)	247.0 (27) ^h	91.3 °	34.4 h	15.3 h	
	247.0 *	241.4 (6.0)	241.8 (7.5)	91.2 °			
13	249.2 (27)	242.7 (6.9)		91.6	39.5 (67) ^d	23.2 (40) ^e (PMe ₂)	
	247.8 (29)	242.2 (6.0)		91.5		15.8 (39) * (PMeH)	
13a			249.9 (27)	92.0	45.7 (60) ¹	23.4 (42) *	
			242.5 (3.0)				
14	248.4 (30)	244.5 *		92.0	29.5 (38) ^d	26.5 (70) °	23.4 (40) 8
	248.0 (30)	244.5 *		91.7			
15	247.4 (29)	242.9	246.3 (29)	91.3 °	29.6 ^h	27.2 *	21.6 "
	246.2 (29)	241.3 (6.0)	242.8 (7.5)	90.1 °			20.3 h
17	246.0 (26)	242.7 (9.0)		91.3	34.3 (37) ^d	22.1 (70) °	28.6
	245.6 (30)	241.7 (3.0)		90.8			
" ² J(PC). " N ² J(P	^h Linienkoinzidenz. (A)–C) $+ {}^{4}J(P(B)–C)$ [^c Isomere.	$\frac{d}{N} ^{1}J(P(A)-C) + ^{1}J(I) $	P(B)-C) . * N	${}^{1}J(P(A)-C) + {}^{3}J(P(B)-C)$	bzw. $N ^{1}J(P(B)-C) + ^{3}J$	(P(A)-C) . ^J Triplett.

¹³C-NMR-DATEN DER VERBINDUNGEN 12-15 UND 17 (Chemische Verschiebung in ppm bezogen auf TMS; Kopplungskonstanten" (Hz) in Klammern) **TABELLE 2**

345

TABELLE 3

			Is a	I _a ^b	20°(°)	
11	1860	1810	1	0.61	76	
12	1855	1805	1	0.67	7 9	
13	1855	1805	1	0.60	75	
13a	1855	1805	1	0.62	77	
17	1860	1810	1	0.57	74	
18	1855	1810	1	0.60	75	

CO-VALENZSCHWINGUNSFREQUENZEN (cm⁻¹) VON 11-13a, 17 UND 18 (Lösungsmittel Dichlormethan)

^a Intensität v_{sym} . ^b Intensität v_{asym} . ^c $I_a/I_s = \tan^2\theta$.

lagekonstante Banden im CO-Valenzschwingungsbereich bei 1855–1860 bzw. 1805–1810 cm⁻¹ (Tab. 3). Aus dem Intensitätsverhältnis der beiden Banden lässt sich für den Winkel zwischen den geminalen CO-Liganden ein Wert von ca. 80° abschätzen [16]. Dies ist in Übereinstimmung mit den eingangs diskutierten Modellstudien und wird durch die Analyse der ¹³C{¹H}-NMR-Daten bestätigt. Im Gegensatz hierzu befinden sich die geminalen CO-Gruppen in den Komplexen $(\eta^5-C_5H_5)(CO)_2LMoMoL(CO)_2(\eta^5-C_5H_5)$ einzähniger Phosphane (L = PPh₃, P(OPh)₃) in "trans"-Position und schliessen Winkel von ca. 120° ein [9].

Röntgenstrukturanalyse von 18

Um eine detailiertere Information über den Aufbau des Mo_2P_2C -Ringsystems, die Koordinationsgeometrie an den Mo-Atomen sowie die Konformation an der Mo-Mo-Achse zu erhalten, wurde an einem repräsentativen Beispiel der nach Gl. 2 (Schema 1) dargestellten Verbindungen eine Röntgenstrukturanalyse durchgeführt.

Das Komplexmolekül 18 liegt im Kristall auf einer kristallographischen C_2 -Achse, die durch das C-Atom des P-C-P-Liganden und die Mitte der Mo-Mo'-Bindung verläuft. An den Mo-Atomen liegt eine quadratisch pyramidale Koordination vor, in der die Cyclopentadienylliganden die axiale Position besetzen (Tab. 4). Die Anordnung der CO-Liganden, P(t-Bu)H-Donorgruppen und Cyclopentadienylliganden in Bezug auf die Mo-Mo'-Achse (Fig. 3, 4) entspricht der in Fig. 1 für Struktur **B** skizzierten Konformation, wie z.B. der Torsionswinkel Z(Cp)-Mo-Mo'-Z(Cp)' von -59.5(1)° zeigt. Z(Cp) entspricht dabei dem Schwerpunkt des C₃-Ringes. Obwohl für die Muttersubstanz (η^5 -C₅H₅)₂Mo₂(CO)₆ die Konformation **D** (Fig. 1) gefunden wurde [11,12], stimmen vergleichbare Bindungslängen gut mit denen von 18 überein (so z.B. der Mo-Mo'-Abstand in (η^5 -C₅H₅)₂Mo₂(CO)₆ 3.235(1) Å [12] und 18 3.2109(4) Å). Der Mo-P-Abstand in 18 (2.4567(8) Å) ist deutlich kürzer als in (η^5 -C₅H₅)Mo(CO)₂(PPh₃)Br (2.532(2) Å [17]) trotz gleichartiger P-Mo-CO-Anordnung.

Der gewellte Mo_2P_2C -Ring liegt in der verdrillten Konformation vor. Diese Ringform ist gegenüber der "Envelope"-Form für das Racemat des Phosphanliganden (t-Bu)HPCH₂PH(t-Bu) bevorzugt, da hier beide sperrigen Reste (t-Bu) die sterisch günstige equatoriale Position einnehmen können. Im Falle der Envelope-Konformation würde sich einer der beiden t-Bu-Reste des Liganden in axialer Position befinden.

AUSGEWAHLTE	ABSTANDE (A) UND WINKEL (*) VON 18		
Mo-Mo' a	3.2109(4)	Mo-C(6)	1.940(3)	C(1)-C(2)	1.400(4)
Mo-P	2.4567(8)	Mo-C(7)	1.928(3)	C(1)-C(5)	1.408(5)
Mo-Z(Cp) ^b	2.014(3)	C(6)-O(1)	1.174(3)	C(2)-C(3)	1.419(4)
Mo-C(1)	2.396(3)	C(7)-O(2)	1.158(4)	C(3)-C(4)	1.414(5)
Mo-C(2)	2.371(3)	P-C(8)	1.834(3)	C(4)-C(5)	1.394(5)
Mo-C(3)	2.308(3)	P-C(9)	1.874(3)	C(9)-C(10)	1.524(5)
Mo-C(4)	2.293(3)	P-H(P)	1.37(3)	C(9)-C(11)	1.518(5)
Mo-C(5)	2.347(3)	C(8)-H(8)	0.87(3)	C(9)-C(12)	1.524(5)
Z(Cp)-Mo-Mo'	121.73(9)	Mo-P-C(8)	112.5(1)		
Z(Cp)-Mo-P	125.43(9)	Mo-P-H(P)	116(1)		
Z(Cp)-Mo-C(6)	120.1(1)	C(8)-P-H(P)	98(1)		
Z(Cp)-Mo-C(7)	117.3(1)	Mo-P-C(9)	123.3(1)		
P-Mo-Mo'	75.60(2)	C(8) - P - C(9)	103.9(2)		
P-Mo-C(7)	81.6(1)	C(9)-P-H(P)	99(1)		
C(6)-Mo-C(7)	75.9(1)	P-C(8)-P'	107.1(2)		
C(6)-Mo-Mo'	64.43(9)	Mo-C(6)-O(1)	167.5(2)		
P-Mo-C(6)	113.94(9)	Mo-C(7)-O(2)	174.5(3)		
C(7)-Mo-Mo	119.4(1)				

TABELLE 4 AUSGEWÄHLTE ABSTÄNDE (Å) UND WINKEL (°) VON 18

^a x', y', z' = 1 - x, y, 0.5 - z. ^b Z(Cp) ist der Schwerpunkt des C₅-Rings.

Fig. 3. Molekülstruktur von 18.

Fig. 4. Projektion von 18 längs der Mo-Mo'-Achse.

Der Torsionswinkel Mo-P \cdots P'-Mo' von 58.5(1)° (0° im Falle der Envelope-Struktur) ermöglicht eine spannungsfreie Überbrückung der Mo-Mo'-Bindung. Der P-C(8)-P'-Winkel (107.1(2)°) ist daher nicht aufgeweitet, obwohl die Mo-Mo'-Bindung 0.261(2) Å länger als der P \cdots P-Kontakt ist.

Experimenteller Teil

Die Methylenbisphosphane 1-10 [10] sowie $(\eta^5-C_5H_5)_2Mo_2(CO)_4(Mo\equiv Mo)$ [7-9] wurden nach Literaturmethoden dargestellt. Arbeitsmethoden und Geräte siehe Ref. [1].

Allgemeine Arbeitsvorschrift für die Synthese von 11-20 und 3a

Zu einer Suspension bzw. Lösung von je 1.0 g (2.3 mmol) $(\eta^5-C_5H_5)_2-Mo_2(CO)_4(Mo\equiv Mo)$ in 20 ml Dichlormethan bzw. Toluol wurden die in Tab. 5 angegebenen Mengen der Phosphane gegeben. Die Reaktionslösungen färbten sich intensiv kirschrot, ungelöstes $(\eta^5-C_5H_5)_2Mo_2(CO)_4(Mo\equiv Mo)$ ging in Lösung. Nach 30 min Rühren wurde das Lösungsmittel i. Vak. (20°C, 0.01 mbar) abgezogen. Der verbleibende Rückstand wurde in 6 ml CH₂Cl₂ aufgenommen und an einer Kiesel-

TABELLE 5

ANSÄTZE, AUSBEUTEN UND ANALYTISCHE DATEN FÜR DIE KOMPLEXVERBINDUN-GEN 11-20 UND 13a

	Phosphan	an Ausbeute Analysen		(Gef. (ber.)	(%))	Molmasse ^a	
	(g (mmol))	(g (%))	C	н	Р		
11	0.18 (2.4) 1	0.55 (46)	34.91	3.04	11.98	518	
			(35.03)	(3.13)	(12.06)		
12	0.26 (2.4) 2	0.94 (75)	37.64	3.74	10.90	517 ^b	
		. ,	(37.60)	(3.69)	(11.44)		
13	0.29 (2.4) 3	1.16 (90)	38.40	4.05	10.95	560	
			(38.86)	(3.95)	(10.95)		
13a	0.32 (2.4)	0.32 (25)	39.20	4.08	9.92	574	
	Me, PCH, PMe,	. ,	(40.02)	(4.24)	(10.86)		
14	0.29 (2.4) 4	0.92 (72)	41.00	3.75	10.81	532 ^b	
		. ,	(41.01)	(3.95)	(10.81)		
15	0.39 (2.4) 5	1.16 (85)	41.69	4.74	9.94	602	
			(42.16)	(4.72)	(10.35)		
16	0.49 (2.4) 6	1.03 (71)	44.53	5.18	9.42	616 ^b	
			(45.02)	(5.35)	(9.67)		
17	0.33 (2.4) 7	0.82 (63)	40.10	3.93	10.77	574	
	()		(40.01)	(4.24)	(10.86)		
18	0.46 (2.4) 8	0.92 (60)	45.23	4.83	9.63		
		• •	(45.16)	(5.05)	(9.70)		
19	0.41 (2.4) 9	0.55 (39)	43.55	3.48	10.11	608	
			(43.73)	(3.48)	(10.25)		
20	· 0.63 (2.4) 10	0.42 (26)	49.77	3.98	8.72		
		- /	(50.15)	(4.03)	(8.93)		

^a Massenspektroskopisch; bezogen auf ⁹⁸Mo. ^b Höchste Masse $(M^+ - 28 m/e)$.

gelsäule chromatographiert (Kieselgel Si 60, 1.5×20 cm, Laufmittel Dichlormethan). Ausbeuten und analytische Daten siehe Tab. 5.

Umsetzung von 15 mit CO

In eine Lösung von 0.39 g (2.4 mmol) 15 in 80 ml Toluol wurde CO 3 h unter kräftigem Rühren bei 100°C eingeleitet. Im Reaktionsgemisch konnte H(i-Pr)-PCH₂PH(i-Pr) ³¹P{¹H}-NMR-spektroskopisch (δ (P) -44.4 ppm), (η ⁵-C₅H₅)₂-Mo₂(CO)₆(Mo-Mo) infrarotspektroskopisch nachgewiesen werden.

Röntgenstrukturanalyse von 18

Die Einkristalle von 18 wurden unter Argon in Glaskapillaren abgeschmolzen und die Kristallsysteme aus Weissenbergaufnahmen erstellt. Die Intensitätsdaten $(4^{\circ} \leq 2\theta \leq 50^{\circ})$ wurden nach dem $\omega - 2\theta$ -Verfahren an einem Siemens AED 1-Diffraktometer unter Verwendung Zr-filtrierter Mo- K_{α} -Strahlung (λ 0.71073 Å) gesammelt. Die Schritte wurden so gewählt, dass die Peakbreite 2/3 der Scanbreite betrug. Lag die Intensität zwischen 2 und $25\sigma_I$, wurde die Messung wiederholt und die Ergebnisse gemittelt. Die Intensität dreier Standardreflexe wurden wiederholt gemessen, um die Stabilität des Kristalls und der Messelektronik zu überprüfen. Die Daten wurden entsprechend korrigiert und nach numerischer Absorptionskorrektur in Strukturamplituden umgewandelt. Die Zellkonstanten (295 K) wurden nach

TABELLE 6

KRISTALLOGRAPHISCHE DATEN VON 18

Formel	$C_{23}H_{32}M_{02}O_4P_2 \cdot CH_2Cl_2$
М	626.33 + 84.93
Kristallsystem	monoklin
a (Å)	18.034(2)
b (Å)	14.909(1)
c (Å)	11.106(1)
α (°)	90
β (°)	99.788(8)
γ (°)	90
Z	4
$d_{\rm x} ({\rm g} {\rm cm}^{-3})$	1.605
Raumgruppe	C2/c
Kristallgrösse (mm)	$0.23 \times 0.51 \times 0.58$
$\mu(\text{Mo-}K_{\alpha}) \text{ (cm}^{-1})$	11.5
Transmissionsfaktoren	0.7077-0.7964
Monitorkorrektur	0.996-1.003
gemessene Quadranten	hkl, hkl
unabhängige Reflexe	2583
beobachtete Reflexe	2332
Parameter	177
R ^a	0.026/0.030
R _w ^a	0.037/0.038
$\Delta \rho^{b} (e/Å^{3})$	0.59 bis -0.53
w	$1/(\sigma^2(F) + 0.0002 F^2)$

^a $R = \sum ||F_o| - |F_c|| / \sum |F_o|$, $R_w = [\sum w(|F_o| - |F_c|)^2 / \sum w |F_o|^2]^{1/2}$; für $F \ge 4\sigma(F)$, bzw. für alle Daten. ^b Maximale bzw. minimale Dichten der abschliessenden Differenz-Fourier-Darstellung.

TABELLE 7

LAGE UND ISOTROPE ODER ÄQUIVALENTE " ISOTROPE TEMPERATURFAKTOREN DER NICHT IDEALISIERTEN ATOME VON 18

Atom	<i>x</i>	y	Z	U	
Mo	0.41232(1)	0.34374(1)	0.19101(2)	0.03133(9)	
C(1)	0.3892(2)	0.4776(2)	0.2980(3)	0.048(1)	
C(2)	0.3376(2)	0.4124(2)	0.3213(3)	0.049(1)	
C(3)	0.2924(2)	0.3899(2)	0.2079(3)	0.054(1)	
C(4)	0.3179(2)	0.4422(2)	0.1170(3)	0.054(1)	
C(5)	0.3778(2)	0.4955(2)	0.1717(3)	0.052(1)	
C(6)	0.4815(2)	0.3615(2)	0.0771(3)	0.0386(9)	
C(7)	0.3765(2)	0.2630(2)	0.0582(3)	0.049(1)	
O(1)	0.5113(1)	0.3740(2)	- 0.0076(2)	0.0514(8)	
O(2)	0.3539(2)	0.2206(2)	-0.0275(2)	0.085(1)	
P(1)	0.43093(4)	0.20184(5)	0.30458(7)	0.0382(2)	
H(P)	0.465(2)	0.207(2)	0.424(3)	0.052(9)	
C(8)	0.5000	0.1288(3)	0.2500	0.056(2)	
H(8)	0.479(2)	0.095(2)	0.190(3)	0.07(1)	
C(9)	0.3520(2)	0.1240(2)	0.3230(3)	0.053(1)	
C(10)	0.3832(2)	0.0428(3)	0.3983(4)	0.079(2)	
C(11)	0.3085(3)	0.0962(3)	0.1995(4)	0.092(2)	
C(12)	0.2991(2)	0.1753(3)	0.3916(5)	0.089(2)	
Cl(1) *	0.0951(3)	0.2625(7)	0.2982(5)	0.223(4)	
Cl(2) ^b	0.0446(5)	0.3538(4)	0.270(1)	0.270(7)	
C(13)	0.0000	0.2584(7)	0.2500	0.156(6)	

^a Äquivalente Temperaturfaktoren = $\frac{1}{3} \sum_i \sum_j U_{ij} \bar{a}_i \cdot \bar{a}_j \mathbf{a}_i^* \mathbf{a}_j^*$. ^b Besetzungsfaktor 0.5.

Atom	U(1,1)	U(2,2)	U(3,3)	U(1,2)	U(1,3)	U(2,3)
Mo	0.0241(2)	0.0333(2)	0.0355(2)	0.00151(9)	0.0017(1)	-0.00372(9)
C(1)	0.042(2)	0.039(2)	0.061(2)	0.009(1)	0.003(1)	-0.014(1)
C(2)	0.045(2)	0.051(2)	0.052(2)	0.012(1)	0.015(1)	-0.008(1)
C(3)	0.027(1)	0.058(2)	0.075(2)	0.007(1)	0.003(1)	-0.015(2)
C(4)	0.045(2)	0.060(2)	0.053(2)	0.024(2)	-0.005(1)	-0.004(2)
C(5)	0.048(2)	0.038(2)	0.070(2)	0.013(1)	0.011(2)	0.007(1)
C(6)	0.036(1)	0.037(1)	0.040(1)	0.003(1)	-0.002(1)	0.002(1)
C(7)	0.043(2)	0.055(2)	0.048(2)	-0.005(1)	0.003(1)	-0.009(1)
O(1)	0.054(1)	0.063(1)	0.039(1)	0.002(1)	0.011(1)	0.009(1)
O(2)	0.093(2)	0.097(2)	0.062(2)	-0.026(2)	0.002(1)	-0.036(2)
P(1)	0.0329(4)	0.0360(4)	0.0463(4)	-0.0055(3)	0.0082(3)	-0.0012(3)
C(8)	0.046(3)	0.034(2)	0.091(4)	0.0000	0.021(3)	0.0000
C(9)	0.044(2)	0.048(2)	0.069(2)	-0.018(2)	0.017(2)	0.000(2)
C(10)	0.073(3)	0.061(2)	0.105(3)	-0.023(2)	0.022(2)	0.023(2)
C(11)	0.087(3)	0.097(3)	0.086(3)	-0.061(3)	-0.002(2)	0.001(2)
C(12)	0.069(3)	0.082(3)	0.131(4)	-0.015(2)	0.056(3)	0.007(3)
Cl(1)	0.206(6)	0.34(1)	0.136(4)	-0.018(6)	0.075(4)	0.039(5)
Cl(2)	0.44(2)	0.141(4)	0.247(8)	-0.100(6)	0.10(1)	-0.024(6)
C(13)	0.24(1)	0.099(7)	0.113(7)	0.0000	-0.024(8)	0.0000

ANISOTROPE TEMPERATURFAKTOREN (Å²) DER NICHTWASSERSTOFFATOME FÜR 18

üblichen Verfahren aus den Braggschen Winkeln von 40 Reflexen ermittelt. Tabelle 6 gibt kristallographische Daten von 18 wieder.

Die Lage der Mo- und P-Atome wurde mit der Schweratommethode ermittelt. Die Koordination der Sauerstoff- und Kohlenstoffatome wurden der nachfolgenden Elektronendichtedarstellung entnommen. Das CH_2Cl_2 -Molekül ist um die C_2 -Achse fehlgeordnet. Die Verfeinerung wurde nach der Methode der kleinsten Fehlerquadrate unter Minimalisierung der Funktion $\Sigma w(||F_o| - |F_c||)^2$ mit dem Programm SHELX-76 [18] durchgeführt. Dispersionskorrigierte relativistische Formfaktoren wurden für alle Atome [19], mit Ausnahme von Wasserstoff (SDS), verwendet. Für alle Mo-, Cl-, P-, O- und C-Atome wurden anisotrope thermische Parameter eingeführt. Die an P und C(8) gebundenen H-Atome wurden isotrop in die Verfeinerung aufgenommen, während die die t-Bu- und C₅H₅-Gruppen nach dem Reitermodell (C-H 0.95 Å) verfeinert wurden.

Die Verfeinerung konvergierte zufriedenstellend. Die abschliessende Differenz-Fourier-Synthese zeigte keine chemisch signifikanten Details. Die Lageparameter der Atome von 18 sind in Tab. 7, anisotrope Temperaturfaktoren der Nichtwasserstoffatome in Tab. 8 zusammengefasst, Fig. 3 gibt die Nummerierung der Atome wieder [20].

Dank

TABELLE 8

Der Deutschen Forschungsgemeinschaft gilt unser Dank für die Gewährung einer Sachbeihilfe, dem Fonds der Chemischen Industrie und dem Ministerium für Wissenschaft und Forschung des Landes Nordrhein-Westfalen für finanzielle Unterstützung. Herrn Dr. K. Gehrmann, Hoechst AG, Werk Knapsack, danken wir für die kostenlose Bereitstellung von Chemikalien. Herrn. Dr. J. Hahn und Herrn. Dipl. Chem. A. Germeshausen, Institut für Anorganische Chemie, Universität Köln, gilt unser Dank für die Aufnahme zahlreicher NMR-Spektren.

Literatur

- 1 S. Hietkamp, T. Lebbe, G.U. Spiegel und O. Stelzer, Z. Naturforsch., im Druck.
- 2 R.J. Puddephatt, Chem. Soc. Rev., 12 (1983) 99.
- 3 D.J. Brauer, S. Hietkamp, H. Sommer und O. Stelzer, J. Organomet. Chem., 281 (1985) 187; Angew. Chem., 96 (1984) 696.
- 4 D.J. Brauer, S. Hietkamp, H. Sommer, O. Stelzer, G. Müller und C. Krüger, J. Organomet. Chem., 288 (1985) 35.
- 5 D.J. Brauer, G. Hasselkuss, S. Hietkamp, H. Sommer und O. Stelzer, Z. Naturforsch. B, 40 (1985) 961.
- 6 D.J. Brauer, S. Hietkamp, H. Sommer und O. Stelzer, Z. Naturforsch. B, 40 (1985) 1677.
- 7 R.J. Klingler, W.M. Butler und M.D. Curtis, J. Am. Chem. Soc., 97 (1975) 3535.
- 8 M.D. Curtis und R.J. Klingler, J. Organomet. Chem., 161 (1978) 23.
- 9 R.J. Klingler, W.M. Butler und M.D. Curtis, J. Am. Chem. Soc., 100 (1978) 5034.
- 10 S. Hietkamp, H. Sommer und O. Stelzer, Chem. Ber., 117 (1984) 3400.
- 11 F.C. Wilson und D.P. Shoemaker, J. Chem. Phys., 27 (1957) 809.
- 12 R.D. Adams, D.M. Collins und F.A. Cotton, Inorg. Chem., 13 (1974) 1086
- 13 R.D. Adams und F.A. Cotton, Inorg. Chim. Acta, 7 (1973) 153.
- 14 P.S. Braterman, D.W. Milne, E.W. Randall und E. Rosenberg, J. Chem. Soc., Dalton Trans., (1973) 1027.
- 15 S. Hietkamp, H. Sommer und O. Stelzer, unveröffentlichte Ergebnisse.
- 16 R.J. Haines, R.S. Nyholm und M.H.B. Stiddard, J. Chem. Soc. (A), (1966) 1606; A.R. Manning, J. Chem. Soc. (A), (1967) 1984; W. Beck, A. Melnikoff und R. Stahl, Chem. Ber., 99 (1966) 3721.
- 17 G.A. Sim, J.G. Sime, D.I. Woodhouse und G.R. Knox, Acta Crystallogr., B35 (1979) 2403.
- 18 G.M. Sheldrick, SHELX-76: Programm zur Bestimmung von Kristallstrukturen, Cambridge 1976.
- 19 International Tables for X-ray Crystallography, Bd. VI, Kynoch Press, Birmingham, 1974.
- 20 Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 52210, der Autoren und des Zeitschriftenzitats angefordert werden.